Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
نویسندگان
چکیده
The theory of kernelization can be used to rigorously analyze data reduction for graph coloring problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input whose size is provably bounded in terms of structural properties, such as the size of a minimum vertex cover. In this paper we settle two open problems about data reduction for q-Coloring. First, we obtain a kernel of bitsize O(kq−1 log k) for q-Coloring parameterized by Vertex Cover for any q ≥ 3. This size bound is optimal up to ko(1) factors assuming NP 6⊆ coNP/poly, and improves on the previous-best kernel of size O(k). We generalize this result for deciding q-colorability of a graph G, to deciding the existence of a homomorphism from G to an arbitrary fixed graph H. Furthermore, we can replace the parameter vertex cover by the less restrictive parameter twin-cover. We prove that H-Coloring parameterized by Twin-Cover has a kernel of size O(k∆(H) log k). Our second result shows that 3-Coloring does not admit non-trivial sparsification: assuming NP 6⊆ coNP/poly, the parameterization by the number of vertices n admits no (generalized) kernel of size O(n2−ε) for any ε > 0. Previously, such a lower bound was only known for coloring with q ≥ 4 colors.
منابع مشابه
k-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملA new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کاملA Reduction based Method for Coloring Very Large Graphs
The graph coloring problem (GCP) is one of the most studied NP hard problems and has numerous applications. Despite the practical importance of GCP, there are limited works in solving GCP for very large graphs. This paper explores techniques for solving GCP on very large real world graphs. We first propose a reduction rule for GCP, which is based on a novel concept called degree bounded indepen...
متن کاملA Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
متن کامل